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ABSTRACT

Identifying moving objects in a video sequence is a fundamental and critical task in many computer-vision
applications. Background subtraction techniques are commonly used to separate foreground moving objects from
the background. Most background subtraction techniques assume a single rate of adaptation, which is inadequate
for complex scenes such as a traffic intersection where objects are moving at different and varying speeds. In this
paper, we propose a foreground validation algorithm that first builds a foreground mask using a slow-adapting
Kalman filter, and then validates individual foreground pixels by a simple moving object model, built using
both the foreground and background statistics as well as the frame difference. Ground-truth experiments with
urban traffic sequences show that our proposed algorithm significantly improves upon results using only Kalman
filter or frame-differencing, and outperforms other techniques based on mixture of Gaussians, median filter, and
approximated media filter.

Keywords: background subtraction, foreground validation, urban traffic video

1. INTRODUCTION

Identifying moving objects in a video sequence is a fundamental and critical task in video surveillance, traffic
monitoring and analysis, human detection and tracking, and gesture recognition in human-machine interface.
A common approach to identifying the moving objects is background subtraction, where each video frame
is compared against a reference or background model. Pixels in the current frame that deviate significantly
from the background are considered to be moving objects. These “foreground” pixels are further processed for
object localization and tracking. Since background subtraction is often the first step in many computer vision
applications, it is important that the extracted foreground pixels accurately correspond to the moving objects
of interest. Requirements of a good background subtraction algorithm include fast adaptation to changes in
environment, robustness in detecting objects moving at different speeds, and low implementation complexity.

At the heart of any background subtraction algorithm is the construction of a statistical model that describes
the background state of each pixel. Different algorithms build the background model differently, ranging from
a single-state estimate based on median filter [1-5], Weiner filter [6], or Kalman filter [7-12], to a full density
estimation based on Gaussian mixture models [13-18] or histograms [19]. All of these algorithms have a fixed
design parameter, typically the size of a frame buffer or a recursive update parameter, that determines how
adaptive the model is to the change in pixel value. We argue that a fixed parameter is inadequate for scenes
such as a traffic intersection where objects move at a variety of speeds. Let us illustrate this with an example.

The top plot in Figure 1(a) shows an example of how a pixel changes its value throughout a period of time.
It begins at level 50, then moves to and stays at 150 for a long period of time. A fast-adapting background
subtraction algorithm may output its background/foreground decision similar to the middle plot in Figure 1(a):
it declares the pixel to be foreground for a short period of time before absorbing the new value as part of the
background state. On the other hand, the output decision from a slow-adapting algorithm, shown in the bottom
plot in Figure 1(a), stays in foreground for a much longer period.

The issue here is that, depending on the particular situation, either of these algorithms can be wrong. One
scenario is shown in the top illustration in Figure 1(b), where an object of gray value 150 is moving slowly to



the right over a background of gray value 50. The resulting foreground masks of a fast-adapting and a slow-
adapting algorithms are shown in the middle and bottom illustrations. The slow-adapting algorithm clearly
produces better results as the fast-adapting algorithm misses most part of the moving object. The problem of a
fast-adapting algorithm failing to detect the motion of a homogeneous object is known as the aperture problem
in computer vision [20]. Notice that both algorithms leave a trail of erroneous foreground pixels behind the
object as their background models are temporarily corrupted by it. Another possible scenario is shown in Figure
1(c), where an object of gray value 50, stationary at first, starts moving and reveals a background of value 150.
The fast-adapting algorithm quickly absorbs the newly-revealed background value and correctly identifies the
moving object. The slow-adapting algorithm, however, leaves a ghost impression of the object long after it is
gone. These two scenarios demonstrate that a single fixed rate of adaptation is not sufficient for objects moving
at different and varying speeds.
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Figure 1. The top plot in (a) shows the changes of a pizel over time. The middle and bottom plots in (a) show the
foreground/background decisions of a fast-adapting and a slow-adapting background subtraction algorithm respectively. (b)
and (c) show two possible scenarios that may correspond to the plots in (a) at time-step to, t1, and ta. The top illustration
in (b) shows an object moving to the right. The top illustration in (c) shows another object that is stationary at to but
starts to move to the right afterwards, revealing the background behind. The middle illustrations show the foreground
masks produced by a fast-adapting algorithm for the two scenarios at the same time-steps, and the bottom illustrations
show those of a slow-adapting algorithm. The dotted arrows indicate where the pizel values and foreground/background
decisions in (a) are sampled at the three time-steps.

The above example also illustrates that it is impossible to determine the correct rate of adaptation by just
considering the causal history of a single pixel. In this paper, we propose a novel algorithm that first builds
a foreground mask based on a slow-adapting algorithm, and then validates individual foreground pixels by a
simple moving object model, built using both the foreground and background statistics as well as a fast-adapting
algorithm. Our primary focus is on detecting moving vehicles and pedestrians in video sequences of urban traffic.
This paper is organized as follows: we describe the proposed algorithm in Section 2 and contrast it with related
work in Section 3. We apply our proposed algorithm and other background subtraction techniques on a set
of urban traffic video sequences. Results of subjective evaluations and objective performance measurements
with respect to a ground-truth are presented in Section 4. In Section 5, we conclude the paper by discussing
limitations of our algorithm and possible future work.



2. PROPOSED ALGORITHM

This section describes our proposed algorithm for validating a foreground mask computed by a slow-adapting
background subtraction algorithm. Figure 2 shows the schematic diagram of our algorithm. The output is a
binary foreground mask F}; at time ¢ with Fy(p) = 1 indicating a foreground pixel detected at location p. There
are three inputs to the algorithm: 1) I is the video frame at time ¢; 2) P; is the binary foreground mask from a
slow-adapting background subtraction algorithm; 3) D; denotes the foreground mask obtained by thresholding
on the normal statistics of the difference between I and I;_1, i.e. Dy(p) =1 if

[1:(p) — It—1(P) — pal
o4

> Td7 (1)

and zero otherwise. g and o4 are the mean and the standard deviation of I;(q) — I;—1(q) for all spatial
locations q. Frame-differencing is the ultimate fast-adapting background subtraction algorithm. Even though it
suffers from severe aperture problem, we choose frame-differencing because it leaves only a short foreground trail
behind a moving object as its memory does not extend beyond the previous frame. There are five components in
our algorithm: blob formation, core object identification, object histogram, background histogram, and object
extension. Their functions are explained below.

Slow-adapting Blob BO, BY ...
mask, P, Formation =
i L i 0% 04 |
Frame-difference ﬁorf- fg)ctgtgct >
mask, Dt —>—» ldentiTication R :
Object
Histogram | | |~
g | Object
=] B Extension
. » Background
Video frame — [ cKg
| Histogram
t
Figure 2. Structure of the data validation module.
In blob formation, all the foreground pixels in P; are grouped into disconnected blobs B, B!, ..., BN based

on the assumption that each foreground pixel is connected to all of its eight adjacent foreground pixels [20]. A
blob may contain 1) no object, 2) part of a moving object, 3) a single moving object with possible foreground trail,
and 4) multiple moving objects. The first case corresponds to the foreground ghost as explained in Section 1.
The second case is likely the result of the aperture problem. Since P; is computed by a slow-adapting algorithm,
the aperture problem occurs only when an object is starting to move. Most blobs fall into the third case of a
single object. The last case of multiple objects occur when multiple vehicles start moving after a traffic light has
turned green. We ignore the last case as the large blob is likely to break down into multiple single-object blobs
once the traffic disperses. The main goals of our algorithm are 1) to eliminate all the ghost blobs, 2) to maintain
the partial-object blobs so that they can grow to contain the full objects, and 3) to produce better localization
for single-object blobs by removing any foreground trail. We accomplish these goals by validating each blob with
the frame-difference mask D; in the core object identification module.

The core object identification module first eliminates all the blobs that do not contain any foreground pixels
from D;. This step removes all the ghost blobs which produce no significant frame differences as there are no
moving objects in them. The module then computes a core object O* for each of the remaining blobs B*. O is

defined as follows: _ _ _
0" = Bounding Ellipse{p : p € B* and D;(p) =1} N B". (2)



We illustrate our definition of O using a single moving object as shown in Figure 3(a). The blob contains both
the object and its foreground trail. The frame-difference mask D, captures the front part of the object and
the small area trailing the object, but completely ignores the rest of the foreground trail of the blob. Taking
advantage of the shape of a typical vehicle, we assume that the object is contained within the bounding ellipse
of all the foreground pixels from D; inside the blob. The key idea is that we can use the bounding ellipse to
exclude most of the foreground trail from the blob. The bounding ellipse is computed by first calculating its
two foci and orientation based on the first and second-order moments of the foreground pixels in D; [21], and
then increasing the length of its major axis until it contains all the foreground pixels. Finally, we output the
intersection between the bounding ellipse and the blob shown in Figure 3(b) as the core object O°.
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Figure 3. (a) The bounding ellipse is defined by the frame-diﬁc_arence foreground pizels within the blob; (b) The intersection
of the bounding ellipse and the blob identifies the core object O; (c) The bounding ellipse may fail to include the full object
emerging from occlusion; (d) The intersection of the core objects at time t — 1 and t is used for estimating the object
histogram.

Our experience with urban traffic sequences indicates that most moving objects can be adequately represented
by their corresponding core objects. Nevertheless, there are situations where the core object captures only a
small portion of the entire moving object. Consider the example of a vehicle emerging from an occlusion as
shown in Figure 3(c). Even though the blob may contain the entire moving object, the foreground pixels from
D, are present only in the front, resulting in a small core object O! covering that part of the object. The
object extension module in Figure 2 is responsible to thrust back some of the blob pixels outside O? back into
foreground. For every pixel p in B? outside O, the object extension module declares p to be foreground if p is
more likely to be part of the core object O than part of the background. The module thus needs to estimate
the Probability Density Functions (PDF) of both the background and the object.

To estimate the background PDF, we first partition the current video frame into M rectangular regions
Ri, Ry, ..., Ryr. Then, for each region R;, we compute a background histogram h; for all the pixels in R; that



are not part of Py, i.e.

hi(s) = Hp:p € Rj and P,(p) = 1 and I;(p) = s}|
e l{p:p € R; and F(p) = 1} ’

for j =1,2,..., M. In our implementation, we partition I; into M = 64 identical rectangular regions.

(3)

To build the object histogram, we notice from Figure 3(b) that the core object O, as defined in Equation
(2), may contain pixels that are not part of the object. It is shown in [6] that the only pixels guaranteed to be
part of the object are pixels from I;_; that are foreground in both D; and D;_;. Based on our experience, this
approach does not always produce sufficient number of pixels to reliably estimate the object histogram. Instead,
for each core object O, we first identify the corresponding core object at time ¢ — 1, which we denote as O! ;. We
accomplish this by finding the core object at time ¢ — 1 that has the biggest overlap with O?. Then, we compute
the intersection between O° and O!_; and build the histogram of the pixels from I;_; under this intersection.
This procedure is illustrated in Figure 3(d). The object histogram g; for core object O can now be defined as
follows: ) .

- Hp:p€O'NO;_; and I;_1(p) = s}
{p:pe O NO;_}| '

Combining the histograms from (3) and (4), the object extension module defines the object extension E’ as
follows:

gi(s) (4)

E'={p:pec B\ O"and g;(I;(p)) > hi(I;(p)) with p € R;} (5)

The final output mask F? is simply the union of all the core objects O! and the object extensions E°.

3. RELATED WORK

In this section, we review related work in background modelling and foreground validation. We first summarize
some of the representative schemes for background modelling. A more detailed exposition can be found in [22]. We
classify background modelling algorithms into non-recursive and recursive techniques. A non-recursive technique
maintains a buffer of video frames and uses a sliding-window approach for background estimation. In order to
keep a long history with low storage requirement, video frames can be stored into the buffer at a frame-rate
r lower than the input rate. The most commonly-used non-recursive technique is median filtering [1-5]. The
background estimate is defined to be the median at each pixel location of all the frames in the buffer. Wiener
filter is used in [6], where the filter coefficients are estimated at each frame time based on the sample covariances.
Unlike median filter or Wiener filter which produce a single background estimate, Elgammal et al. [19] build a
background PDF using a Gaussian kernel estimator. The advantage of using a full density function over a single
estimate is the ability to handle multi-modal background distribution. Examples of multi-modal background
include pixels from moving leaves of a swinging tree or pixels near high-contrast edges which flicker under small
camera movement.

Recursive techniques recursively update a single background model and do not store a buffer of video frames.
The two simplest recursive techniques are approximated median filter [23,24] and Kalman filter [7-12]. Approx-
imated median filter increments a running estimate of the median by one if the input pixel is larger than the
estimate, and decrements by one if smaller. Kalman filter is a widely-used recursive technique for tracking linear
dynamical systems under Gaussian noise. Many different versions have been proposed for background modelling,
differed mainly in the state spaces they use for tracking. We provide a brief description of the popular scheme
used in [7]: the internal state at pixel location p of the Kalman Filter is described by the background intensity
S¢(p) and its temporal derivative S;(p), which are recursively updated as follows:

S A [m e (a0 ) ®

Matrix A describes the background dynamics and H is the measurement matrix. The Kalman gain matrix K
switches between a slow adaptation rate a; and a fast adaptation rate as > 1 based on the feedback of the
foreground mask F;_1:

Qo

_ | Q1 | —
K= [ o ] if F;_1(p) =1, and [ a

} otherwise. (7
1



Another popular recursive technique is the Mixture of Gaussian (MoG), which tracks the background distribution
as a linear sum of K Gaussian component densities [13-18]. If the new input pixel I;(p) is close to one of the
Gaussian component, the mean and the standard deviation of that component is updated. Otherwise, the least
probable one is deleted and a new component is added centered at I;(p) [14]. The weights of all the components
are decayed at a rate of (1 — «), except for the weight of the updated component which is incremented by «.
To determine which components correspond to the background, all components are first ranked by the ratios
between their weights and standard deviations. Then, the first N components that satisfy the following criterion
are declared to be the background components:

iN
> wpe>T, (8)

k=iq

where wy i, ..., Wk, are the weights of the components after ranking, and I' > 0 is the weight threshold. I, is
declared as background if it is within D times the standard deviation from the mean of any one of the background
components.

Many foreground validation techniques have also been proposed in the literature. Some of them incorporate
knowledge from the high-level applications such as tracking [9,25], or use extra information such as depth [25,26]
to improve the background model. Optical flow is also commonly used to detect ghost blobs [5,27]. In contrast
to these approaches, our algorithm does not rely on any external information and uses the much simpler frame-
differencing for ghost-blob removal. Algorithms have also been proposed to combine multiple background models
running at different adaptation rates [12,19]. However, the combination is done by a simple conjunction at the
pixel level, rather than at the blob level as in our algorithm. Pixel-level combination might lead to the aperture
problem as the fast-adapting algorithm can fail to detect slow-moving objects. Blob-level processing has been
proposed in [6] for foreground validation. Similar to our algorithm, [6] builds core objects based on the intersection
of a slow-adapting mask and the frame-difference mask, and grows the core objects using object histograms and
connected component grouping. Nevertheless, lackluster results are reported in [6] because, by growing the core
objects from a waving tree, the blob-level processing turns part of the sky into foreground. There are three key
differences between our proposed algorithm and that proposed in [6]. First, in our proposed algorithm, the object
growing is confined within the slow-adapting mask, thus limiting the amount of false-positives the algorithm can
introduce. Second, we use both the object histogram and the background histogram to achieve reliable object
growing. Finally, using a bounding ellipse as a first order approximation to the object leads to a significant
speedup as it already accounts for most of the foreground pixels.

4. EXPERIMENTAL RESULTS

In this section, we compare the performance of our proposed algorithm with other algorithms in the literature.
We apply the background subtraction algorithms to luminance sequences only. For preprocessing, we first apply
a three-frame temporal erosion to the test sequence, that is we replace I; with the minimum of I;_q, I;, and
I¢11. This step can reduce temporal camera noise and mitigate the effect of snowfall present in one of our test
sequences. Then, a 3 x 3 spatial Gaussian filter is used to reduce spatial camera noise.

Even though our proposed algorithm can work with any slow-adapting background subtraction algorithm,
we have chosen Kalman filter as described in Section 3 for its simplicity in implementation. To propagate the
validation results to future frames, we use the output mask F; from the foreground validation for feedback in
the Kalman filter. The parameters of the Kalman filter are set as follows [7]:

1 0.7
A= { 0 o ] , H=[10, o5 =000, a=0.05. (9)

Similar to the frame-difference thresholding in Equation (1), P;(p) =1 if

|1t (p) — St (pP) — |
o’

> T, (10)



where S;(p) is the internal state of the Kalman filter, and uj and oy, are the mean and the standard deviation of
I,(q) — S¢(q) for all spatial locations q in the frame. In our experiments, we set the frame-difference foreground
threshold T; to be 2.0, and vary the Kalman filter foreground threshold T} to show the trade-off between false-
positives and false-negatives in foreground detection.

The set of algorithms used for comparison include frame differencing (FD), approximated median filter
(AMF), Kalman filter without validation (KF), median filter (MF), and Mixture of Gaussian (MoG). Based on
our earlier work in [22], we have selected particular values for the parameters in these algorithms that perform
well in our test sequences. These fixed parameters are listed in Table 1. The most sensitive parameter in each
algorithm is used as the test parameter to show the trade-off between false-positives and false-negatives.

Schemes Fixed parameters Test parameter

Frame differencing (FD) None Foreground threshold Ty

Approximated median filter (AMF) None Foreground threshold T

Kalman filter (KF) ap = 0.001, s = 0.05 Foreground threshold T},

Median filter (MF) Buffer size L =9 Foreground threshold T
Buffer sampling rate r» = 10 frame/sec

Mixture of Gaussian (MoG) Number of components K = 3 Deviation threshold D

Adaptation rate o = 0.05
Weight threshold I' = 0.25
Initial variance o2 = 36
Initial weight w, = 0.1

Table 1. Background modelling schemes and their parameters.

4.1. Test Sequences

We have selected four publicly-available urban traffic video sequences from the website maintained by KOGS/-
TAKS Universitaet Karlsruhe® A sample frame from each sequence is shown in the first row of Figure 4. The
first sequence is called “Bright”, which is 1500 frames long showing a traffic intersection in bright daylight. The
second sequence is called “Fog”, which is 300 frames long showing the same traffic intersection in heavy fog. The
third sequence “Snow” is also 300 frames long and shows the intersection while snowing. Fog and Snow were
originally in color; we have first converted them into luminance and discarded the chroma channels. The first
three sequences all have low to moderate traffic, and contain “stop-and-go” traffic — vehicles come to a stop in
front of a red-light and start moving once the light turns green.. The last sequence “Busy” is 300 frames long.
It shows a busy intersection with the majority of the vehicle traffic flowing from the top left corner to the right
side.

4.2. Evaluation

In order to have a quantitative evaluation of the performance, we have selected ten frames at regular intervals
from each test sequence, and manually highlighted all the moving objects in them. These “ground-truth” frames
are selected from the latter part of each of the test sequences’ to minimize the effect of the initial adaptation
of the algorithms. In the manual annotation, we highlight only the pixels belonging to vehicles and pedestrians
that are actually moving at that frame. Since we do not use any shadow suppression scheme in our comparison,
we also include those shadow pixels cast by moving objects. The ground-truth frames showing only the moving
objects are shown in the second row of Figure 4.

*The URL is http://i2lwww.ira.uka.de/image_sequences. All sequences are copyrighted by H.-H. Nagel of KOGS/IAKS
Universitaet Karlsruhe.

"The ground-truth frames are selected from the last 1000 frames in the Bright sequence, and the last 200 frames in
the remaining three sequences.



(a) Bright (b) Fog (¢) Snow (d) Busy

Figure 4. Sample frames and the corresponding ground-truth frames from the four test sequences: Bright, Fog, Snow,
and Busy.

We use two information retrieval measurements, recall and precision, to quantify how well each algorithm
matches the ground-truth [28]. They are defined in our context as follows:

Number of foreground pixels correctly identified by the algorithm
Recall = . : (11)
Number of foreground pixels in ground-truth

Precisi Number of foreground pixels correctly identified by the algorithm (12)
recision =
Number of foreground pixels detected by the algorithm

Recall and precision values are both within the range of 0 and 1. When applied to the entire sequence, the recall
and precision reported are averages over all the measured frames. Typically, there is a trade-off between recall
and precision — recall usually increases with the number of foreground pixels detected, which in turn may lead
to a decrease in precision. A good background algorithm should attain as high a recall value as possible without
sacrificing precision.

By varying the testing parameter of each algorithm, we obtain the Precision-Recall (PR) curves for the test
sequences as shown in Figure 5(a) to (d). Notice that the PR curves of all the non-recursive techniques (FD,
AMF, MF) are almost continuous over the entire range of recall values, while those from the recursive ones (MoG,
KF, Proposed) are discrete, occupying shorter ranges of recall. The reason is that non-recursive techniques do
not have a feedback loop so that it is possible to run the simulation once and compute the precision and the
recall for any test parameter value. Recursive techniques require a separate simulation for each different test
parameter value, and thus we only obtain results at a few operating points.

Figure 5(a) shows the results of the sequence “Bright”. The worst performer is FD and the best performer,
at least for recall above 60%, is our proposed algorithm. Our proposed algorithm shares a similar shape with KF
but has a much better precision. MoG outperforms the proposed algorithm at low recall primarily because MoG
can adapt its threshold for each pixel individually, while our proposed algorithm relies on the global standard
deviation. As some of the ground-truth frames have only a few moving objects, the global standard deviation
becomes quite small. This turns some of the background pixels into foreground erroneously and thus lowers the
precision values. The PR curves of “Fog” in Figure 5(b) follow a similar trend as those in Figure 5(a).

Figure 5(c) shows that our proposed algorithm significantly outperforms all the other schemes in the sequence
“Snow”. This can be explained by the two thresholds T; and T} used in our proposed algorithm. The “Snow”
sequence is very noisy and all other algorithms need high foreground thresholds to prevent excessive false fore-
ground, thus resulting in low recall values. On the other hand, our proposed algorithm can use a small threshold
T}, in the Kalman filter to get good coverage of the moving objects, but uses a large frame-difference threshold
T, for building the correct shapes of the objects and removing the ghost foreground blobs.



In the final sequence “Busy”, our proposed algorithm performs worse than MoG and MF for recall values
above 60%. This reversal of performance is due to the large number of moving objects clustered together in
“Busy”. At high recall values, the foreground threshold of the Kalman filter is small, creating a large blob that
contains many moving objects. The resulting bounding ellipse is not able to eliminate any of the false foreground
between vehicles, leading to a low precision value.

We further illustrate the differences between the algorithms using two sets of extracted foreground images in
Figure 6 and 7. The corresponding original images are shown in Figure 8. Figure 6 is extracted from “Bright”,
showing a car moving to the left and a pedestrian walking to the right. FD is noisy and captures only fragments
of the car due to the aperture problem. Both AMF and KF leave a foreground trail behind each moving object
as their background states are corrupted. MF, MoG, and the proposed algorithm produce similar results. Figure
7 is extracted from “Snow” showing a car starting to move to the bottom after being stationary for a long time.
AMF, KF, and MF leave a ghost foreground behind the moving car. MoG is less problematic but still has
much noise. FD and the proposed algorithm have no ghost at all. Only the proposed algorithm produces an
almost-perfect localization of the car. Notice that even the low-contrast windshield is captured due to the two
thresholds used in the proposed algorithm as explained earlier.

5. CONCLUSIONS

In this paper, we have introduced a new algorithm to validate foreground regions or blobs captured by a slow-
adapting background subtraction algorithm. By comparing the blobs with bounding ellipses formed by frame-
difference foreground pixels, the algorithm can eliminate false foreground trails and ghost blobs that do not
contain any moving object. Better object localization under occlusion is accomplished by extending the ellipses
using the object and background pixel distributions. Ground-truth experiments with urban traffic sequences have
shown that our proposed algorithm produces performance that are comparable or better than other background
subtraction techniques.

Our proposed algorithm, however, has a number of limitations. First, the use of bounding ellipses may not be
appropriate for complex-shaped objects such as human beings. Second, we use frame-differencing as it produces
minimal false foreground trails behind objects. This assumption may not hold if the input video frame rate is
very low. Finally, as described in Section 4.2, the proposed algorithm does not perform well when there are
multiple moving objects close to each other. We are currently improving our algorithm by building multiple
ellipses to identify moving objects and using the background distribution to identify the background area among
them.
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Figure 5. Precision-recall plots for (a) Bright, (b) Fog, (c) Snow, and (d) Busy.

(d) MF

(e) MoG (f) Proposed

Figure 6. Foreground images identified by various algorithms showing a moving car and a pedestrian in sequence “Bright”.
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f) Proposed
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Figure 7. Foreground images identified by various algorithms showing a car that starts to move after being stationary for
awhile in sequence “Snow”.

Figure 8. (a) and (b) show the original images corresponding to the foreground masks in Figure 6 and 7.
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